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1. A partition V = C1 ∪ · · · ∪Ck is the vertices of a graph G is equitable
if for each i, j, there is a number dij (depending only on i, j) such that
if v ∈ Ci, then v has exactly dij neighbors in Cj .

(a) Show that the trivial partition C1 = V is equitable iffG is regular.

(b) Show that a partition is equitable iff the induced subgraph on
each Ci is regular, and the induced bipartite graph in between
Ci, Cj is biregular (meaning in that subgraph, the vertices in Ci

all have the same degree, and the vertices in Cj all have the same
degree, but those in Ci need not have the same degree as those
in Cj).

2. Color Refinement is the following procedure. Given a simple undi-
rected graph G, initially assign all vertices the same color. At each
round, each vertex gets a new color, which will be a pair consisting
of its old color, together with the multiset of colors of its neighbors.
At each stage, the coloring gives a partition of V (G) into its color
classes. The process stops when the partition no longer changes, and
the resulting coloring is called the stable coloring.

(a) Characterize those graphs for which the initial coloring is the
stable coloring.

(b) How long does it take to compute a stable coloring?

(c) Show that the partition of V (G) given by a stable coloring is
always an equitable partition.

(d) Show that the stable coloring is always the coarsest equitable
partition, that is, any other equitable partition refines that given
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by the stable coloring. In other words, if V = C1 ∪ · · · ∪Ck is an
equitable partition, then under color refinement, for each i, every
vertex in Ci receives the same color.

3. The 2-dimensional Weisfeiler–Leman algorithm for Graph Isomorphism
(2-WL) works as follows. To decide isomorphism between two graphs
G,H, it will assign colors to the pairs of vertices of G iteratively, and
then use the result to (hopefully) make isomorphism testing easy.

(a) Initially, the pair (v1, v2) is given one of three colors: red if v1 =
v2, black if (v1, v2) ∈ E(G), and white if (v1, v2) /∈ E(G).

(b) At iteration i+ 1, a pair (v1, v2) gets a new color, which is itself
a tuple of the form (c,M1,M2), where c is the previous color of
(v1, v2) (at iteration i), M1 is the multiset of colors (from iteration
i) of the tuples of the form (u, v2) (for all u ∈ V (G)), M2 is the
multiset of colors of the tuples of the form (v1, u).

(c) At each iteration, the coloring defines a partition of V (G)2. The
iteration stops when this partition does not change. This coloring
is called the stable coloring.

Each “color” is thus really a nested structure consisting of tuples of
colors and multisets of tuples of colors and multisets of tuples of colors
and multisets of... If the multiset of colors in the stable coloring of G
and the stable coloring of H do not agree, then the algorithm reports
that they are not isomorphic. In general, it is possible for the multi-set
of colors to agree but still that G ̸∼= H. We say a graph G is identified
by 2-WL if for any graph H that is not isomorphic to G, we have that
the stable colorings of G and H disagree.

From each coloring of V (G)2, we can get a coloring of V (G) by as-
signing to each vertex v the color of the pair (v, v) in V (G)2. Show
that the coloring of V (G) one gets this way from the stable coloring
of V (G)2 agrees with the stable coloring of V (G) gotten by the color
refinement procedure of the previous problem.

4. (a) An n × n permutation matrix is a matrix with 0-1 entries, with
exactly one 1 in each row and exactly one 1 in each column.
Show that permutation matrices are orthogonal, that is, if P is a
permutation matrix, the P−1 = P T .

(b) For a graph G, let A(G) denote its adjacency matrix, whose
(i, j) entry is 1 iff (i, j) ∈ E(G). Show that two graphs G,H
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are isomorphic iff there is a permutation matrix P such that
PA(G) = A(H)P .

(c) Given two graphs G,H, consider the following system of linear
equalities and inequalities, with n2 variables Pi,j :

PA(G) = A(H)P∑
j

Pi,j = 1 ∀i

∑
i

Pi,j = 1 ∀j

Pi,j ≥ 0 ∀i, j

Show that P is an integer-valued solution to this system of (in)equations
iff P is a permutation matrix corresponding to an isomorphism
G → H.

(d) Two graphs are called fractionally isomorphic if the above system
of equations has a rational solution. Give an example of two
graphs that are fractionally isomorphic but not isomorphic.

(e) Suppose P is a solution to the above equations. Let GP denote a
directed graph with adjacency matrix P . Show that the strongly
connected components of GP form an equitable partition of G.

(f) (*) Use the preceding to show that two graphs are fractionally
isomorphic iff they are indistinguishable by color refinement.

(g) Using the preceding characterization, again give an example of
two graphs that are fractionally isomorphic but not isomorphic.

Resources

• Arvind 2016 survey in Bull. EATCS

• Sandra Kiefer 2020 survey in ACM SIGLOG News

• Fractional isomorphism of graphs was introduced and studied in Ra-
mana, Scheinermann, & Ullman, Disc. Math., 1994; some of the au-
thors wrote a whole book on fractional graph theory (easily found
by searching). Turns out fractionally isomorphic graphs share many
properties, even if they are not isomorphic.
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http://bulletin.eatcs.org/index.php/beatcs/article/view/442
https://dl.acm.org/doi/10.1145/3436980.3436982
https://core.ac.uk/download/pdf/82156267.pdf
https://core.ac.uk/download/pdf/82156267.pdf


• (Thanks to Michael Levet for suggesting this and the subsequent re-
sources) Kiefer & McKay ICALP ’20 (arXiv:2005.10182 [cs.DM]) show
that the number of iterations of color refinement achieves the worst-
case bound of n− 1.

• Cai, Fürer, Immerman for reading material on (i) how to get our hands
on WL, (ii) connections to descriptive complexity (i.e., writing down
succinct logical formulas), and (iii) WL (even higher-dimensional) does
not solve GI in polynomial time. This is a landmark paper in the field.

• Grohe–Verbitsky, ICALP ’06: WL can be efficiently parallelized, and
this can yield nice complexity theoretic upper bounds for classes con-
tained within P.
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https://doi.org/10.4230/LIPIcs.ICALP.2020.73
https://arxiv.org/abs/2005.10182
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/11786986_2

